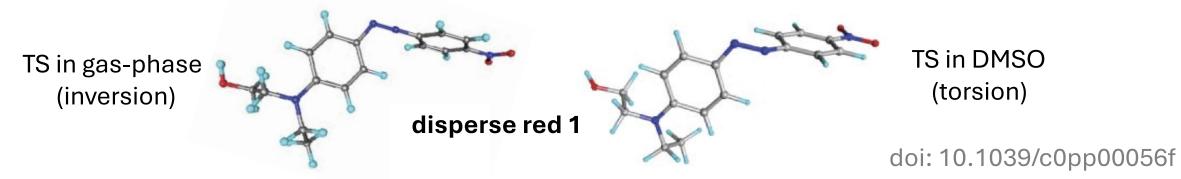

Hybrid methods for computing the electronic structure of complex systems: QM/MM

Importance of environment in chemistry

Motivation: solvation

Most chemical reactions occur in a homogeneous, isotropic solution, not in gas-phase

• the conformation can vary depending on the solvent

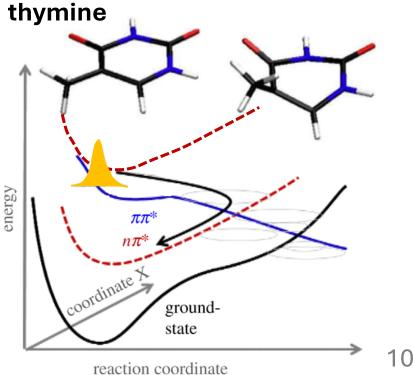


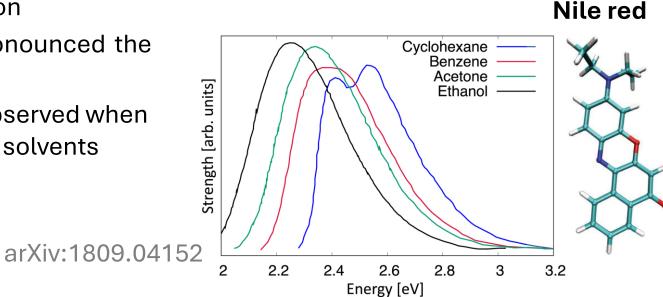
population %

	In gas-phase B3LYP/6-311++G**	In water: PCM B3LYP/ 6-311++G**
I	99	4
2	I	28
3	-	68

doi: 10.1021/jp711006f

• the reaction mechanism can vary depending on the solvent

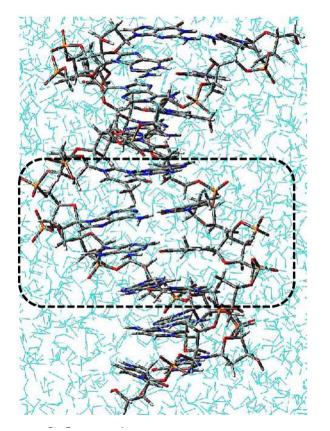


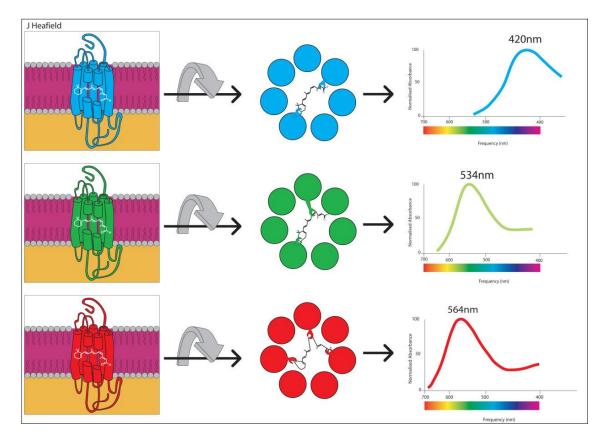

• even if the mechanism is conserved the reaction rate can change

Motivation: solvation

Each excited state is affected differently by solvation

- the larger the dipole moment, the more pronounced the spectral shift
- **solvatochromic effect**: the phenomenon observed when a solution changes color as a function of the solvents

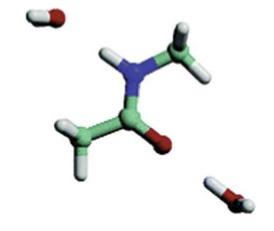

• the reaction mechanism can change with respect to gas-phase opening of new channels which could trap the ES populations or accelerate the decay to the GS


10.1098/rsta.2017.0473

Motivation: heterogeneous media

Reaction in a heterogeneous, anisotropic environment

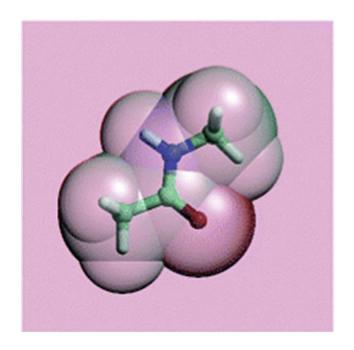
• studying reactions catalyzed by proteins


• studying complex molecular structures (DNA, membranes)

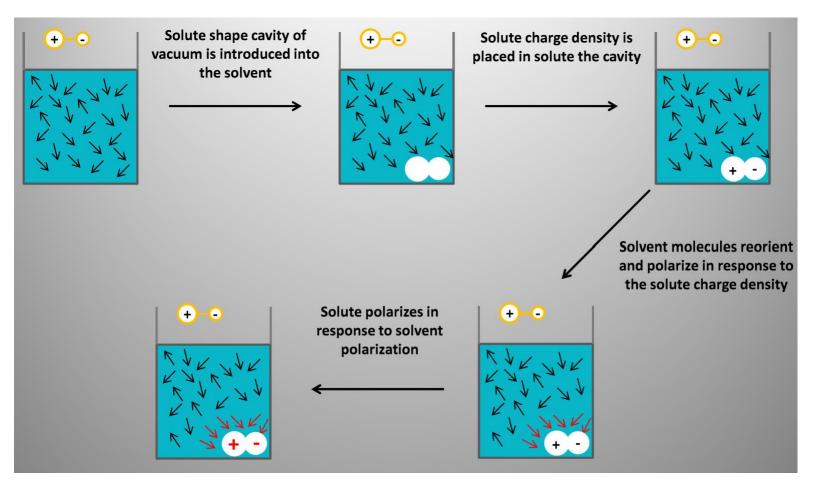
Approaches for introducing solvent effects in the calculations

Micro-solvation

micro-solvation: modeling solute-solvent interactions by means of a supermolecule made of an aggregate of the solute and a limited number of solvent molecules


- the entire supermolecule is treated at the QM level
- easy to realize (no coding or external programs necessary)
- suitable for treating strong intermolecular interactions (e.g. H-bonds, solute protonation)
- omits long range electrostatic solute-solvent interactions
- outcome depends strongly on the user's choice regarding the number and positions of solvent molecules

The continuum approach


continuum solvation: an environment is replaced by an infinite continuum dielectric around a cavity containing the solute

- the solute is described at a QM level
- in the standard implementation solute-solvent interactions are limited to those of electrostatic origin
- model system is a very dilute solution (composed of a single solute molecule)
- solvent is isotropic, at equilibrium at a given temperature
- not capable of describing anisotropic environment and directional interactions (e.g. H bonds)

The continuum approach: electrostatics and polarization

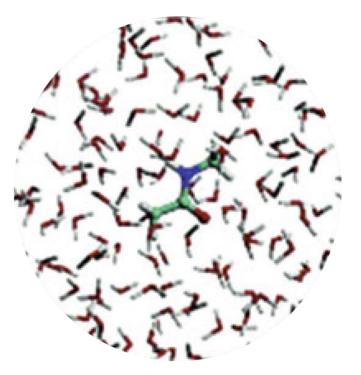
The charge distribution ρ_M of the solute, inside the cavity, polarizes the dielectric continuum, which in turn polarizes the solute charge distribution. This definition of the interaction corresponds to a **self-consistent process**, which is numerically solved following an iterative procedure

The hybrid QM/MM approach

Quantum Mechanics (**QM**)/ Molecular Mechanics (**MM**): a hybrid method combining the advantages of both worlds

- active part part of the system involved in a (photo)reaction described at the QM level
- inactive part surrounding which remains in equilibrium described at the MM level
 - Quantum Mechanics

describes bond breaking and forming, excited states, non-equilibrium dynamics


- expensive and time-consuming
- Molecular Mechanics

very fast, realiable results around equilibrium

electrons are not treated explicitly, requires parametrization, cannot describe bond breaking or forming

Molecular Mechanics (MM)

Force fields

Potential energy surface through **mathematical functions** and **empirical parameters** that describe the energetic contributions of the various interactions between atoms

$$v(\mathbf{R}) = E_{bond} + E_{angle} + E_{dihedral} + E_{Coulomb} + E_{VdWaals}$$

van der Waals

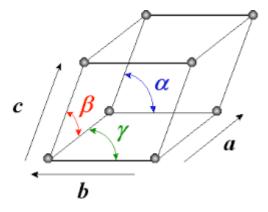
Coulomb stretching bending torsion Energy Repulsion r_i θ_i τ_i 'Dispersio functional form $\frac{1}{2}\sum_{i}A_{j}[1+(-1)^{j+1}\cos(j\tau_{i}+\phi)] \qquad \qquad \sum_{i}\sum_{j>i}4E_{IJ}\left(\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12}-\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6}\right)$ $\frac{1}{2}k_{i}^{a}(\Theta_{i}-\Theta_{i0})^{2} \qquad \qquad \frac{1}{4\pi\varepsilon_{0}}\sum_{j}\sum_{i}\frac{q_{i}q_{j}}{R_{ij}} \qquad \qquad \text{Lennard-Jones potential}$ $\frac{1}{2}k_{i}^{b}(r_{i}-r_{i0})^{2}$

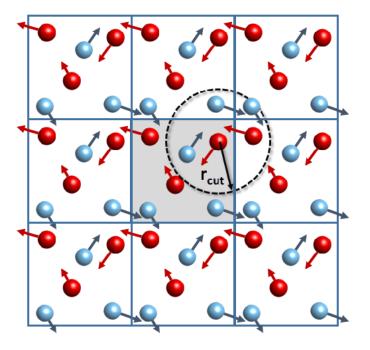
parameter set: atom-specific parameters $(k_i^b, r_{i0}, k_i^a, \Theta_{i0}, A_j, q_i, E_{IJ}, \sigma_{ij}, \text{etc.})$ which depend not only on the atom itself but also on the nearest neighbours

Force Field \equiv functional form + parameter set

Force fields

			_ angle parameters						
PARM99 for DNA,RNA,AA, organic molecules, Polariz.& LP incl.02/04/99			_						
C 12.01	0.616 !	sp2 C carbonyl group	C -C -O	80.0	120.00	Junmei et	al, 1999 acrolei	.n	
CA 12.01	0.360	sp2 C pure aromatic (benzene)	С -С -ОН	80.0	120.00	Junmei et	al, 1999		
CB 12.01	0.360	sp2 c pure aromatic (benzene) sp2 aromatic C, 5&6 membered ring junction	CA-C -CA	63.0	120.00	changed fi	rom 85.0 bsd on	C6H6 nmodes: AA	
CC 12.01	0.360	sp2 aromatic C, 5 memb. ring HIS	CA-C -OH	70.0	120.00		sed in tyr)		
CD 12.01	0.360	sp2 C atom in the middle of: C=CD-CD=C	CB-C -NA	70.0	111.30	NA	jed an cyr,		
CK 12.01			CB-C - 0		128.80	NA			
	0.360 0.360	sp2 C 5 memb.ring in purines		80.0					
CM 12.01		sp2 C pyrimidines in pos. 5 & 6	CM-C -NA	70.0	114.10				
CN 12.01	0.360	sp2 C aromatic 5&6 memb.ring junct.(TRP)	CM-C -0	80.0	125.30				
CQ 12.01	0.360	sp2 C in 5 mem.ring of purines between 2 N	CT-C - <mark>0</mark>	80.0	120.40				
CR 12.01	0.360	sp2 arom as CQ but in HIS	CT-C -02	70.0	117.00				
··· atom parameters		CT-C -N	70.0	116.60	AA genera	l			
H 1.008	0.161	H bonded to nitrogen atoms	CT-C -CT	63.0	117.00	Junmei et	al, 1999		
HC 1.008	0.135	H aliph. bond. to C without electrwd.group	CT-C - <mark>OS</mark>	80.0	115.00	Junmei et	al, 1999		
H1 1.008	0.135	H aliph. bond. to C with 1 electrwd. group	CT-C -OH	80.0	110.00	Junmei et	al. 1999		
H2 1.008	0.135	H aliph. bond. to C with 2 electrwd.groups							
H3 1.008	0.135	H aliph. bond. to C with 3 eletrwd.groups	•••	··· dihedral parameters					
HA 1.008	0.167	H arom. bond. to C without elctrwd. groups	X -C -C -X	4	14.50	180.0	2.	Junmei et al, 1999	
H4 1.008	0.167	H arom. bond. to C with 1 electrwd. group	X -C -CA-X		14.50	180.0	2.	intrpol.bsd.on C6H6	
H5 1.008	0.167	H arom.at C with 2 elctrwd. gr,+HCOO group	X -C -CB-X		12.00	180.0	2.	intrpol.bsd.on C6H6	
•••		rameters	X -C -CM-X	4	8.70	180.0	2.	intrpol.bsd.on C6H6	
	-		X -C -CT-X	6	0.00	0.0	2.	JCC,7,(1986),230	
C -C 310.0	1.525	Junmei et al, 1999	$\mathbf{X} - \mathbf{C} - \mathbf{N} - \mathbf{X}$	4	10.00	180.0	2.	AA, NMA	
C -CA 469.0		JCC,7,(1986),230; (not used any more in TYR)	X -C -N*-X	4	5.80	180.0	2.		
C -CB 447.0		JCC,7,(1986),230; GUA						JCC,7,(1986),230	
C -CM 410.0		JCC,7,(1986),230; THY,URA	X -C -NA-X	4	5.40	180.0	2.	JCC,7,(1986),230	
C -CT 317.0		JCC,7,(1986),230; AA	X -C -NC-X	2	8.00	180.0	2.	JCC,7,(1986),230	
C -N 490.0		JCC,7,(1986),230; AA	X -C -O -X	4	11.20	180.0	2.	Junmei et al, 1999	
C -N* 424.0		JCC,7,(1986),230; CYT,URA	X -C -OH-X	2	4.60	180.0	2.	Junmei et al, 1999	
C -NA 418.0		JCC,7,(1986),230; GUA.URA	X -C -OS-X	2	5.40	180.0	2.	Junmei et al, 1999	
C -NC 457.0		JCC,7,(1986),230; CYT			onnord I		ko mosto ko		
C -0 570.0	1.229	JCC,7,(1986),230; AA,CYT,GUA,THY,URA	··· Lennard-Jones parameters						
C -02 656.0		JCC,7,(1986),230; GLU,ASP	Н	0.6000	0.0157	!Fe	rguson base pair	geom.	
C -OH 450.0	1.364	JCC,7,(1986),230; (not used any more for TYR	HO		0.0000			CS, 110, (1988), 1657	
C -OS 450.0	1.323	Junmei et al, 1999	HS		0.0157		Cornell CH3SH —		
C -H4 367.0	1.080	Junmei et al, 1999							
C -H5 367.0	1.080	Junmei et al, 1999	HC		0.0157	OP		0 (4002) 062	
CA-CA 469.0		JCC,7,(1986),230; BENZENE,PHE,TRP,TYR	H1		0.0157		enstra et al JCC,		
CA-CB 469.0		JCC,7,(1986),230; ADE,TRP	H2		0.0157		enstra et al JCC,		
CA-CM 427.0		JCC,7,(1986),230; CYT	H3		0.0157	Ve	enstra et al JCC,	8,(1992),963	
CA-CN 469.0	1.400	JCC,7,(1986),230; TRP	HP	1.1000	0.0157	Ve	enstra et al JCC,	8,(1992),963	
			HA	1.4590	0.0150		ellmeyer		
							,		

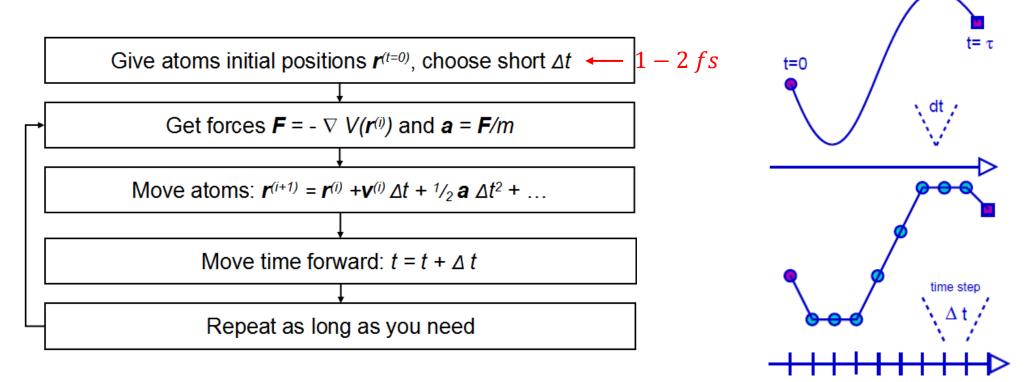

Force fields


- Assisted Model Building with Energy Refinement (AMBER, https://ambermd.org/AmberModels.php) & Chemistry at Harvard Macromolecular Mechanics (CHARMM, http://mackerell.umaryland.edu/charmm_ff.shtml): two families of force fields for molecular dynamics of biomolecules (proteins, DNA, RNA, carbohydrates, lipids)
 - AMBER is also the name for the molecular dynamics software package.
- The Optimized Potentials for Liquid Simulations (OPLS, http://zarbi.chem.yale.edu/oplsaam.html) & Generalized AMBER Force Field (GAFF, https://ambernd.org/antechamber/gaff.html): generalized force fields for organic molecules
- Universal Force Field (UFF): a full periodic table force field with extra terms that can be used to calculate single point energies, do geometry optimizations, calculate frequencies... but less optimal for molecular dynamics
- **AMOEBA**: a **polarizable** force field designed to model molecular systems with greater physical realism

Periodic boundary conditions

Periodic boundary conditions (PBC): used to limit the negative effects of the small system size

• For each particle with position r, we can imagine infinite replicas present at positions $r + l \cdot a + m \cdot b + n \cdot c$, where l, m, n are integers and a, b, care the vectors representing the cell axes.


In practice:

- when a particle leaves the box, one of its images re-enters from the opposite side
- when calculating pairwise energy, it is done using the nearest replicas

Molecular dynamics

Molecular dynamics (MD): simulation of the temporal evolution of the system based on the principles of classical mechanics

• consists in solving numerically Newton's equations of motion for each particle

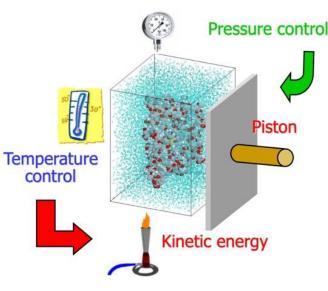
- **cutoff radius**: Coulomb interactions are long range ($\propto 1/r$), however it is expensive to consider every pair of interactions in the system \rightarrow calculate interactions with atoms within cutoff (e.g. 10 Å)
- shake algorithm: keep hydrogens fixed during MD. allows for longer time step in the integration schemes (typically 1 2 fs) \rightarrow solvent molecules move as rigid bodies (translations and rotations)

Molecular dynamics: heating

NVE (aka **microcanonical**) ensemble: MD solves the Newton's equations conserving the total energy;

- constant Number of particles, energy E and volume V ensemble
- closed system (no exchange with environment)

NVT (aka **canonical**) ensemble: emulates energy flowing in/out of the system (thus not conserved) to mimic heat exchange with a bath in a thermal contact

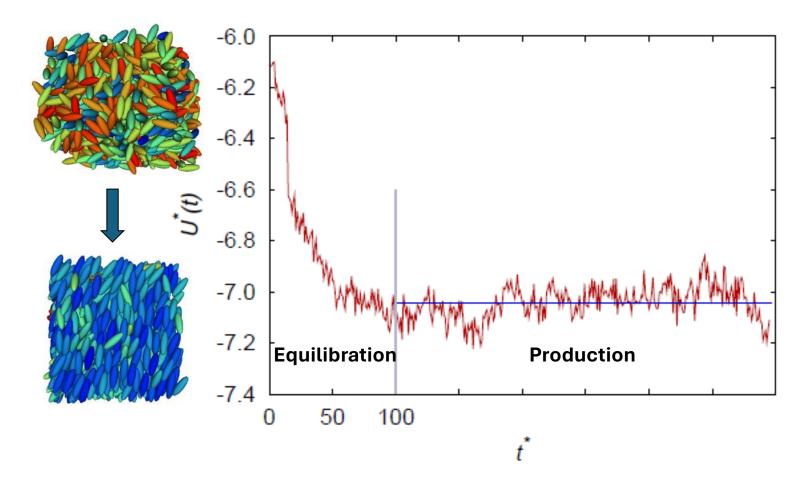

• realized through a **thermostat**: random adjustment of atomic velocities (temperature in MD is related to the average kinetic energy of particles):

 $T\propto \left< \nu^2 \right>$

NpT (aka **isothermic-isobaric**) ensemble: allows the box size and shape to fluctuate to maintain target pressure

 realized through a barostat: adjustment of box volume through randomly scaling particle coordinates and forces they experience

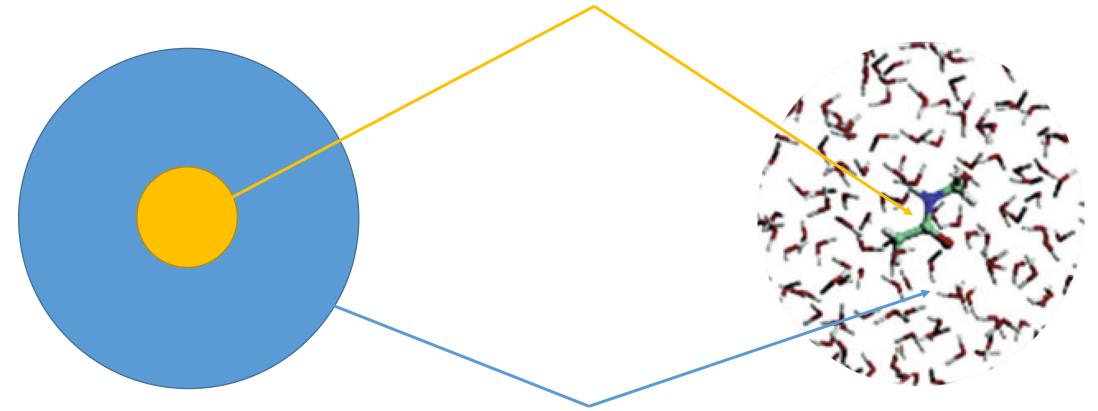
$$p \propto 1/V$$



Molecular dynamics: equilibration & production

Heating: the simulation is run for several hundreds of *ps* until the reaching desired temperature (e.g. 300 K)

Equilibration: the simulation is run for several *ns* until reaching a stable thermodynamic state that is representative of the desired ensemble

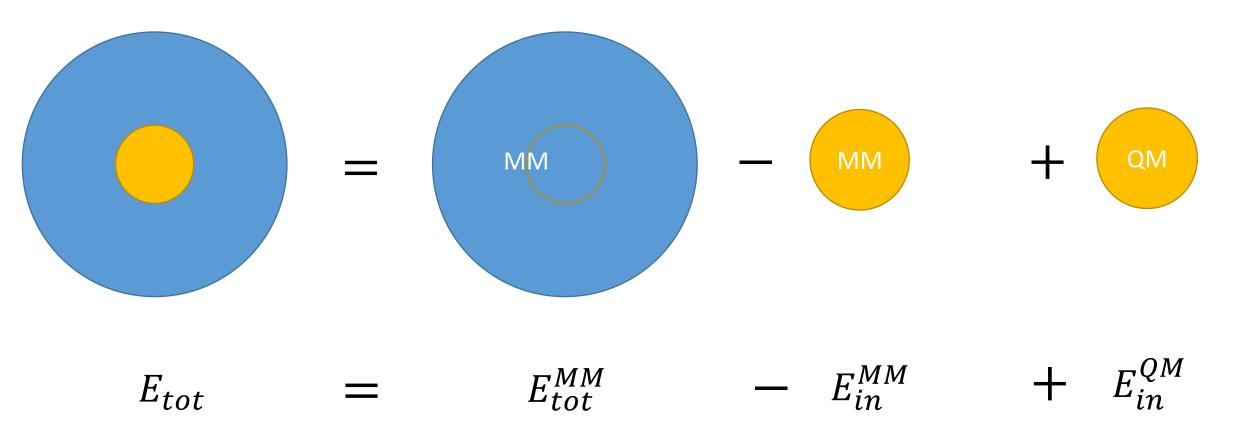

Production: once equilibrium is reached statistical data are collected

Basics of QM/MM

QM/MM partitioning

QM level: inner region (active site, chromophore)

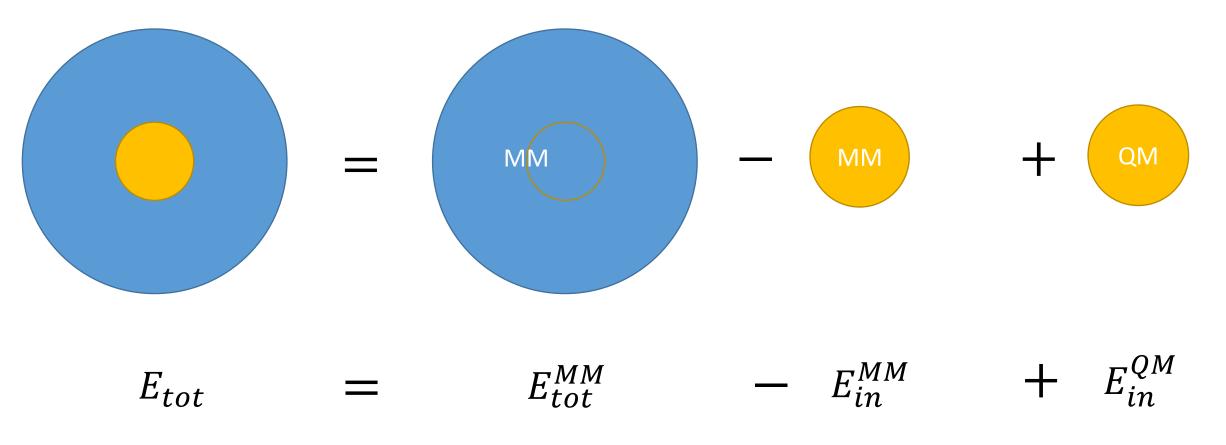
MM level: outer region (explicit solvent, protein)


droplet: since PBC algorithms are missing in most QM programs, a cavity solvation model is usually used in QM/MM schemes

- follows shape of solute
- avoids possible anisotropic charge screening

QM/MM partitioning schemes: subtractive scheme

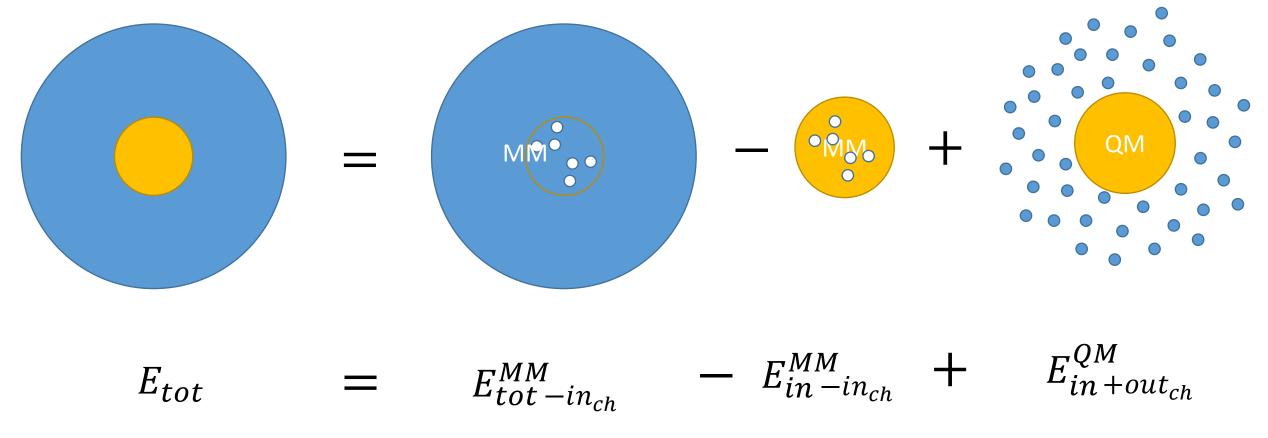
Subtractive scheme for QM/MM calculations involve:


- an MM calculation of the entire system
- an MM calculation of the inner region
- a QM calculation of the inner region

QM/MM partitioning schemes: subtractive scheme

mechanical embedding: electron density of QM atoms represented as point charges in the MM calculation

- point charges can be updated in every step from fitting the electrostatic potential generated by the QM density
- QM calculation is conducted <u>in the absence</u> of the outer region (environment cannot polarize the electron density of the solute)

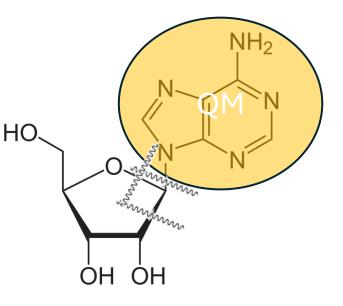

QM/MM partitioning schemes: subtractive scheme

electrostatic embedding: MM atoms represented as point charges in the QM calculation

• introduce additional terms in the Hamiltonian operator

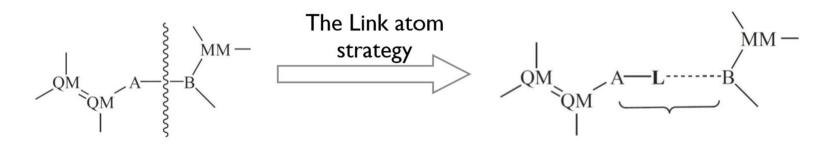
$$\widehat{H}_{QM/MM}^{electr} = -\sum_{i \in inner} \sum_{j \in outer} \frac{q_j}{|r_i - R_j|} + \sum_{A \in inner} \sum_{j \in outer} \frac{q_j Z_A}{|r_A - R_j|}$$

- *i*: electrons in the QM layer
- A: nuclei in the QM layer
- *j*: atoms (point charges) in the MM layer
- solvent can polarize the electron density of the solute

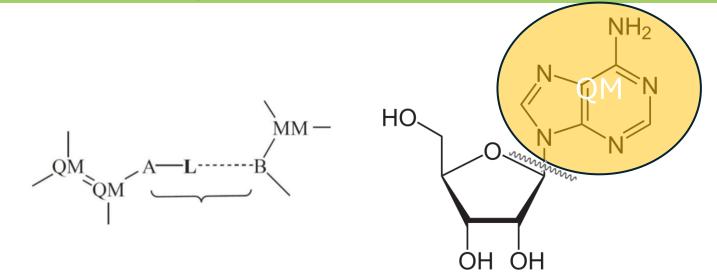


Definition of QM and MM systems: where to put the cut?

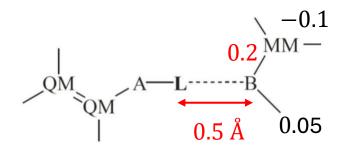
Rules of thumb for QM/MM partitioning


- the QM layer should include the bonds which are formed / broken OR <u>entire</u> photoresponsive system
- no cuts through double or higher order bonds
- cut should be "sufficiently" far from the active center (optimal balance between cost and accuracy)
- the fewer number of cuts, the better

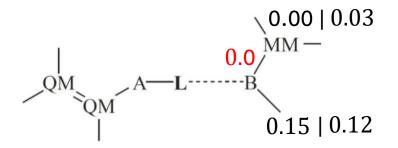
Partitioning along "innocent" C(sp³)-C(sp³) bonds should be preferred


Treatment of QM/MM cuts along covalent bonds

The link atom strategy:

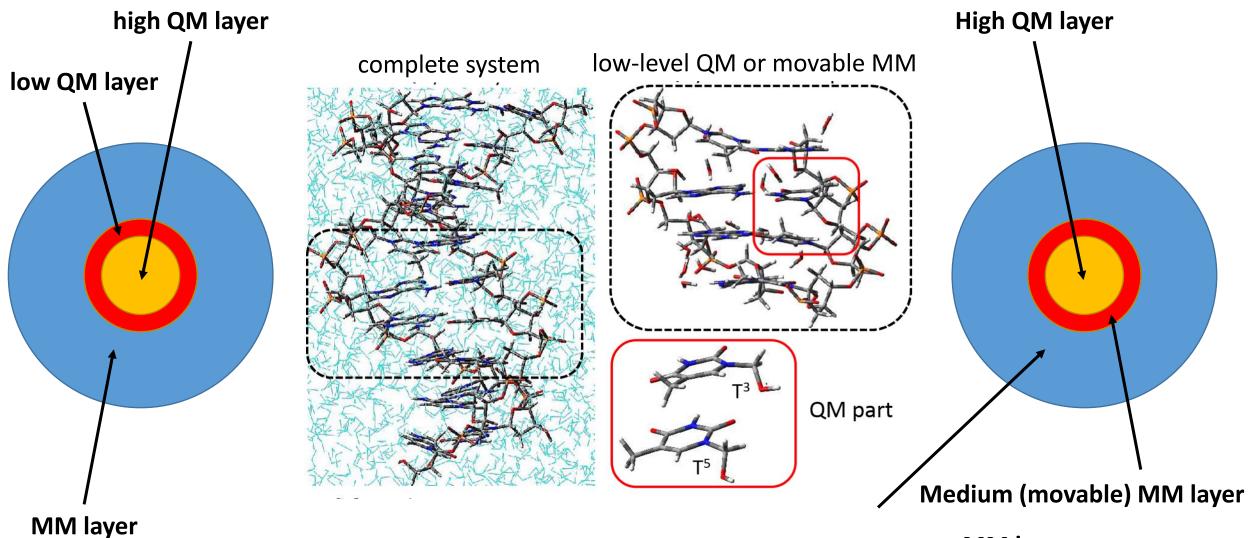

- **link atom**: an additional atomic center **L** that is not part of the real system is introduced. It is covalently bound to the QM atom **A** and saturates its free valence
- the link atom L is in most cases a hydrogen atom, but any monovalent atom or group might be used (e.g. CH₃)
- QM calculations are performed on an electronically saturated system consisting of the inner subsystem and the link atom(s)
- the real bond **A-B** is described at the MM level

Charge neutrality of QM and MM layers



- QM layer has unit charge by definition
- MM layer is built out of units / residues (e.g. nucleosides , amino acids, etc.) which have unit charges
 - if the QM/MM cut is applied at the bond between two residues (rarely the case) then also the MM layer has unit charge
 - if the QM/MM cut is applied at a bond from a residue the MM layer (usually) does not have a unit charge
 - rescaling of the residue charges to assure unit charge

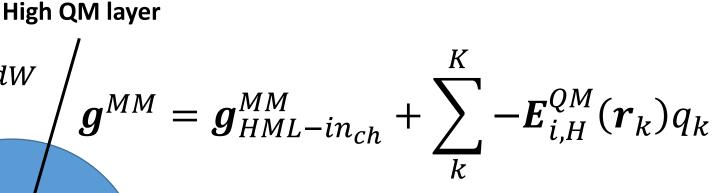
The problem of overpolarization of the link atom



- due to the short **B**--**L** distance, the charge of the close-by atom **B** of the MM layer may overpolarize the QM system
- remedy: redistribute the charge of atom **B** onto the nearby MM atoms (nearest neighbours)
 - v1: equal amounts
 - v2: weighted according to the original charges of the MM atoms

Multi layer schemes

Multi-layer schemes: increase the level of theory / flexibility for atoms in the immediate vicinity of the QM layer



MM layer

Energy gradients and NACs

$\boldsymbol{g}_{i}^{QM} = \boldsymbol{g}_{i,H+out_{ch}}^{QM} + \boldsymbol{g}_{HML-in_{ch},VdW}^{MM}$

- $g_{i,H}^{QM}$: gradient of the *i*-th electronic state of the High layer computed at the QM level
- $g_{HML,VdW}^{MM}$: non-bonding interactions between High and Medium/Low layer computed at the MM level
- link atom gradient projected onto next neighbours High and Medium layer atoms

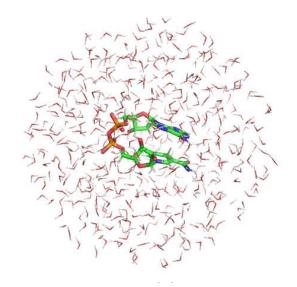
- g_{HML}^{MM} : gradient of the Medium layer atoms computed at the MM level
- $E_{i,H}^{QM}(r_i)$: value of the electric field due to the electron density of the *i*-th electronic state of the High layer at the coordinates of the *k*-th point charge

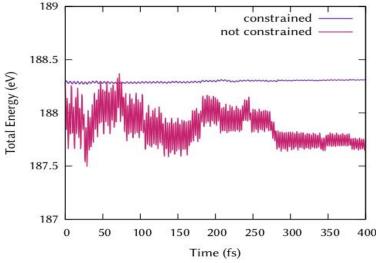
Medium (movable) MM layer

- NAC computed only for High layer!
 - assumed that MM atoms do not induce non-adiabatic couplings (approx. justified as long as link atom sufficiently far from photoresponsive center)

Considerations on dynamics

Wigner sampling


- equilibrate MM atoms around each <u>fixed</u> Wigner sampled geometry for 10 ps (takes care of static disorder across ensemble)
- use Wigner sampled velocities for High layer and MM velocities at last step of equilibration for Medium layer


Rattle

- correction of solvent molecules' velocities in the Velocity Verlet algorithm
- constrain internal DOFs of solvent molecules (keep only translations and rotations)
- as an alternative: use flexible force fields which describe non-equilibrium solvent

Velocity rescaling

- when using NAC vector, by default only velocities of High layer atoms are adjusted after hopping
- when using GD vectors, make sure that only velocities of High layer atoms are adjusted after hopping

QM/MM with **COBRAMM**

COBRAMM: Cobramm is Optimized in Bologna to Run Ab-initio and Molecular Mechanics

Edit

https://site.unibo.it/cobramm Ô

HOME INTRODUCTION HOW TO GET COBRAMM DOCUMENTATION LIST OF PUBLICATIONS

https://gitlab.com/cobrammgroup/cobramm $\leftarrow C$

🖹 COBRAMM Development Group / 📄 cobramm / Wiki / Home

_	_									
♦					۲					
	D	ະນ								
Q Search or go to										
Project										
Ŕ	cobra	mm								
\$	Pinned									
	Issues									
	Merge requests									
0.	-									
	Mana	ge			>					
包	Plan									
	Issues		15							
	Issue boards									
	Milest	tones								
1	Wiki									
	Requi	rements								
	Code				>					
Q	Build									
Φ	Secure									
Ð	Deploy									
ଚ	Operate									
Щ.	Monitor									
μı	Analyze >									
ø	Settings >									

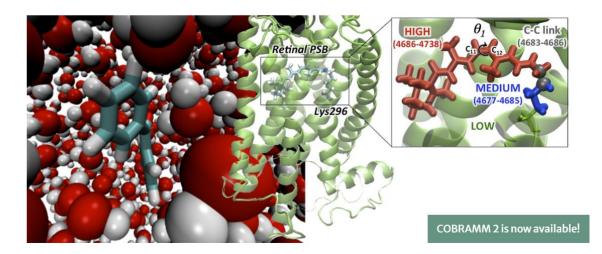
Home

Last edited by Flavia Aleotti 4 months ago

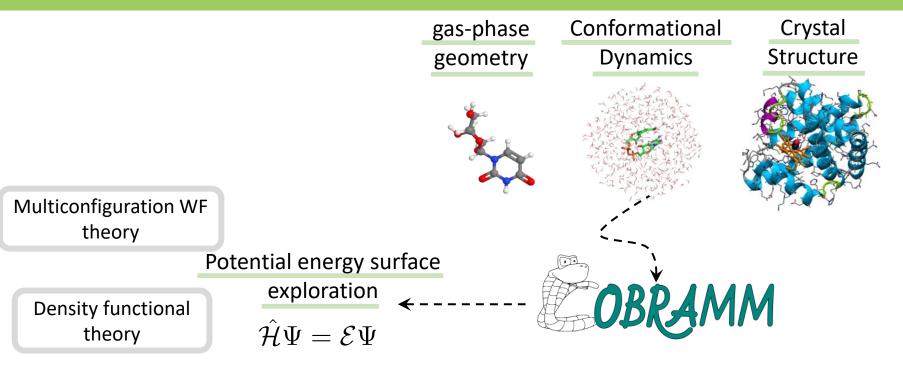
OBRAMM 22

Welcome to the COBRAMM wiki pages!

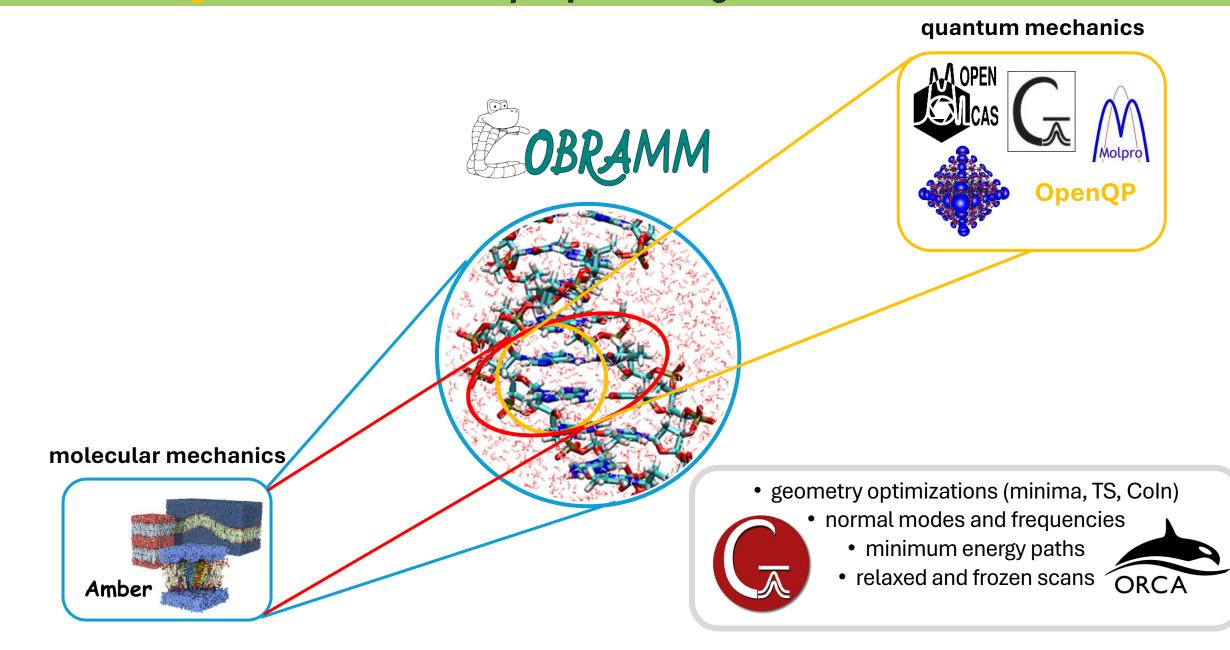
COBRAMM is a program package interfacing widely known commercial & academic softwares for molecular modeling (spanning from electronic structure to molecular mechanics computations). It allows ground and excited state electronic structure computations within a combined guantum mechanical/molecular mechanical (QM/MM) framework to bridge the atomistic to the nano-scale. The user can perform all necessary steps to simulate chemical reactions in complex environments (ranging from solvents to bio-polymers) and model the interaction of those systems with light to simulate their spectroscopy, as well as their photoinduced dynamics.

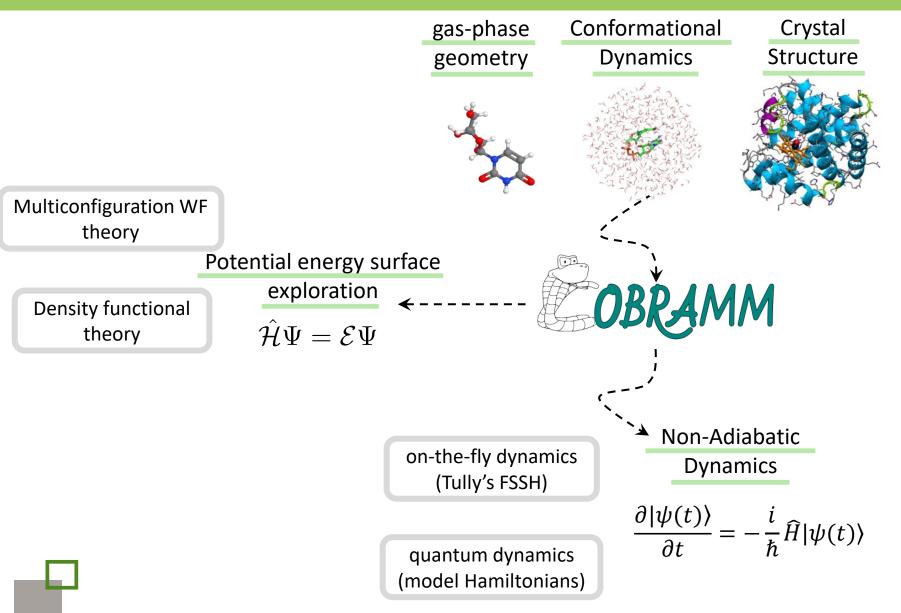

A detailed description of the QM/MM methodology and the capabilities of the code is available in the following publication: O. Weingart, A. Nenov, P. Altoè, I. Rivalta, J. Segarra-Martí, I. Dokukina, M. Garavelli, COBRAMM 2.0 -- A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations, J. Mol. Model. 24, 271 (2018).

Requirements and installation

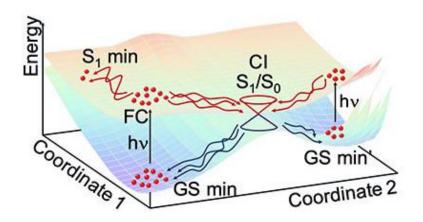

To install COBRAMM on your machine, you can follow the instructions of the brief installation guide contained in the wiki.

COBRAMM Manual


1. Introduction 1. The QM/MM partitioning scheme 2. The boundary region 3. Handling QM/MM non-bonding cross-terms 4. The COBRAMM code 2. Basic guide to COBRAMM 1. Input Files Description 2. Input preparation 3. Running COBRAMM 4. Working with COBRAMM numerical routines 5. Post-processing utilities 3. Task-based manual 4. Software-based manual

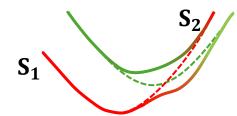

COBRAMM features

COBRAMM: High / Medium / Low layer partitioning


COBRAMM features

https://site.unibo.it/cobramm

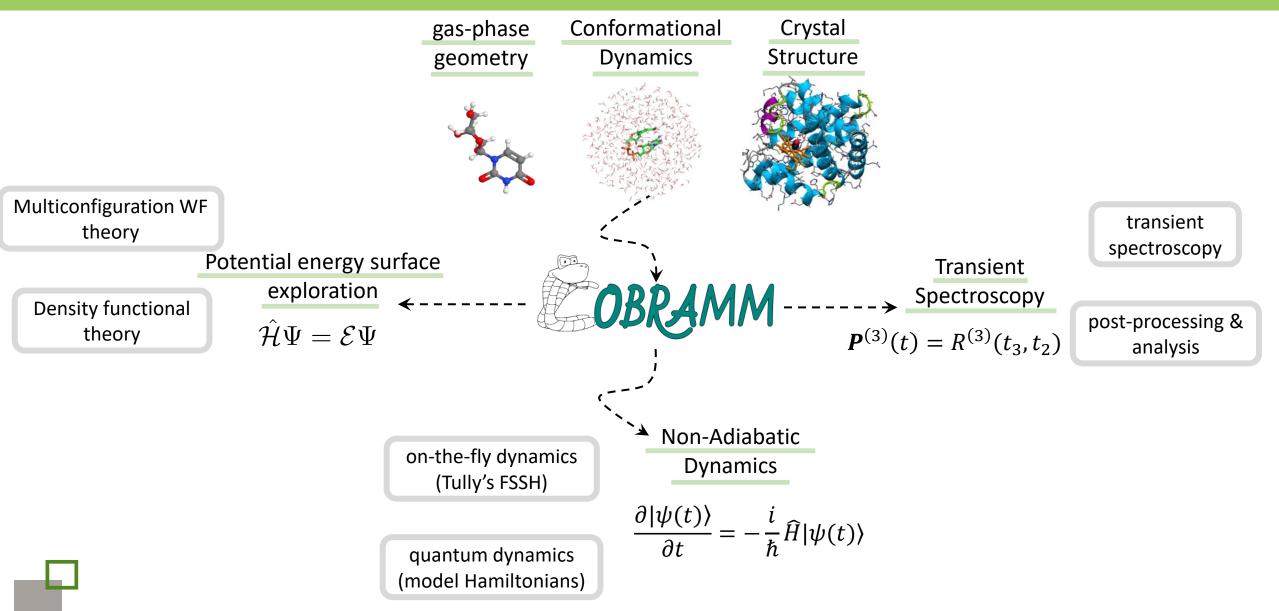
Excited state non-adiabatic dynamics

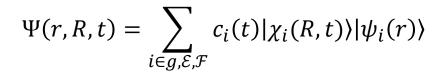

Mixed quantum-classical dynamics in explicit movable solvent (MQCD/MM)

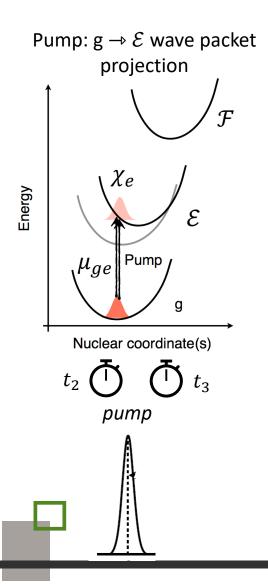


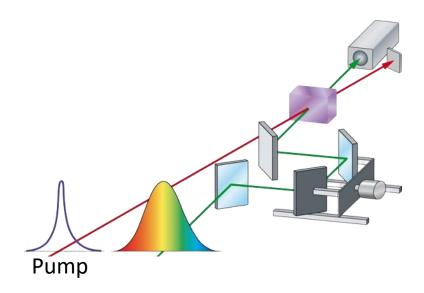
- Tully Fewest Switches Surface Hopping
 - hopping probability estimated through non-adiabatic or time-derivative couplings
- CASSCF/CASPT2 (Molcas, Molpro)
- TD-DFT (Gaussian, Turbomole)
- MR-DFT (OpenQP, only in vacuo)

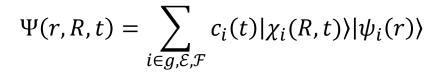
Full-Dimensional Quantum dynamics in explicit movable solvent

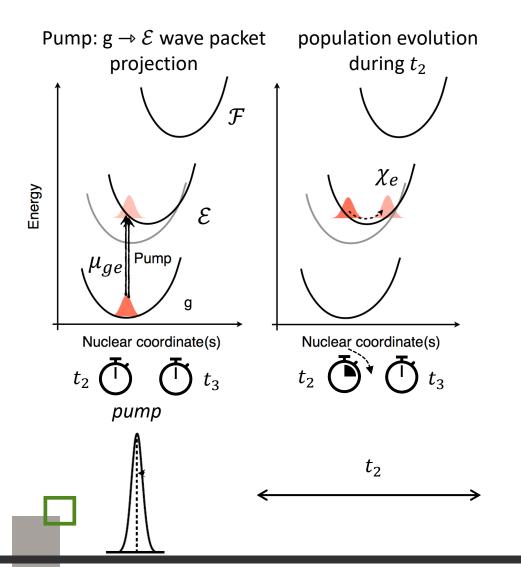

(QD/MM)

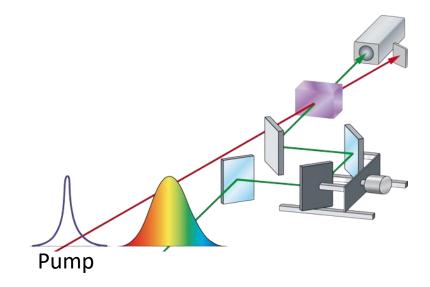


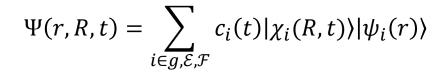


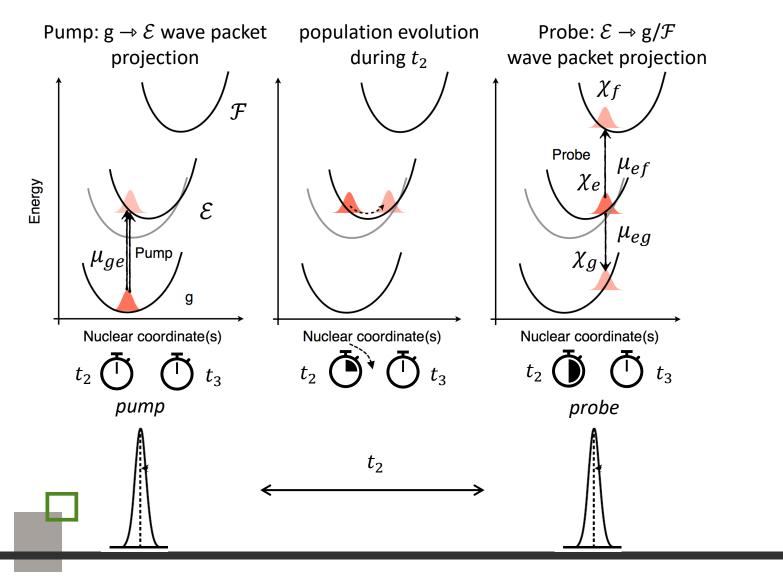

- Hamiltonian of High Layer approximated by a Linear Vibronic Coupling model (rigid systems, fast dynamics)
- quantum-classical interaction treated by a mean field approach
- COBRAMM-Quantics (MCTDH) interface
- fully automatized parametrization at CASPT2 level (through Molcas)

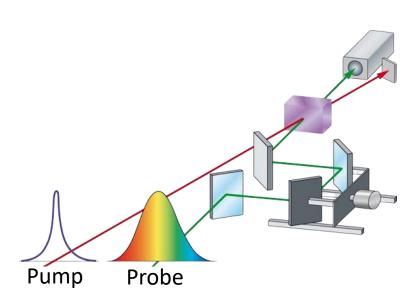

COBRAMM features

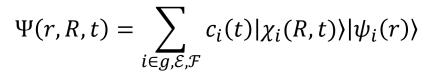


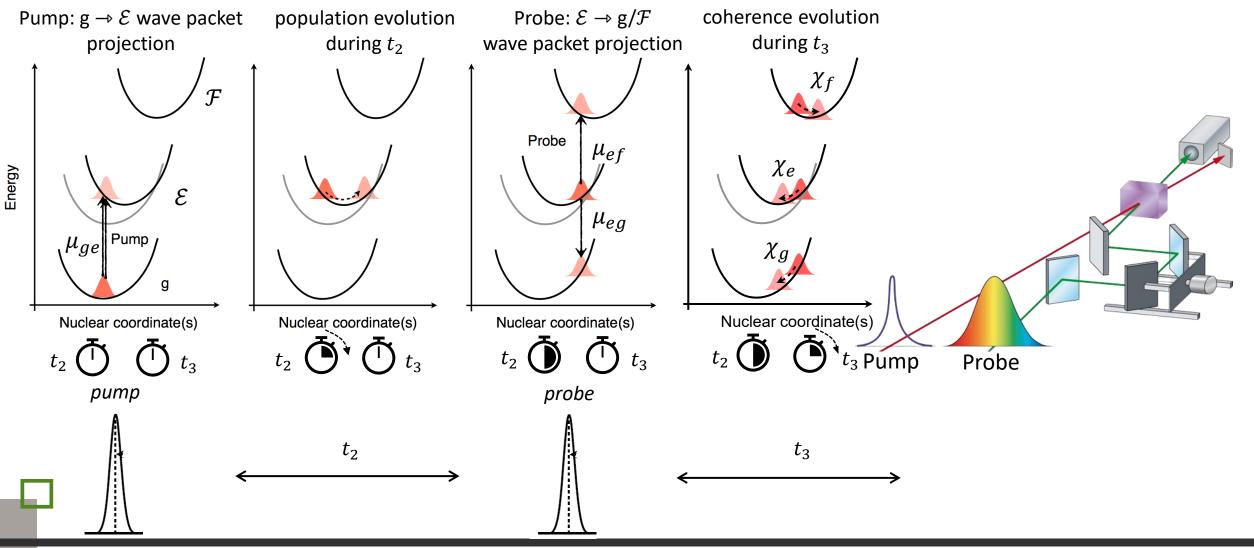


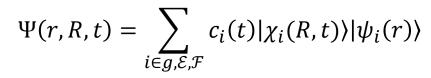


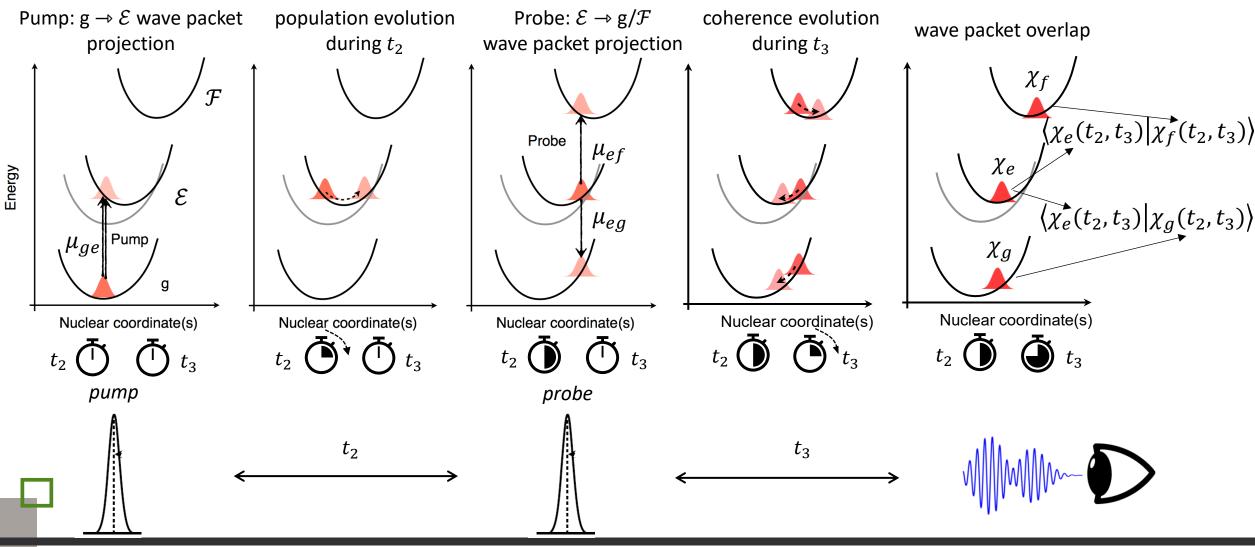


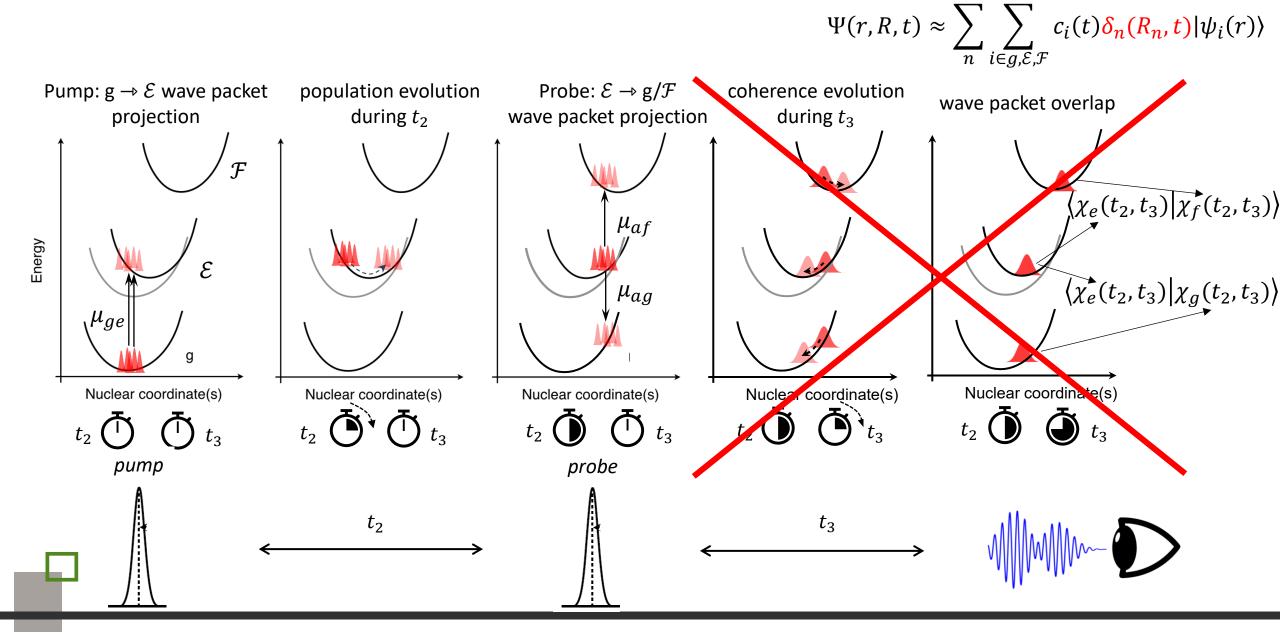


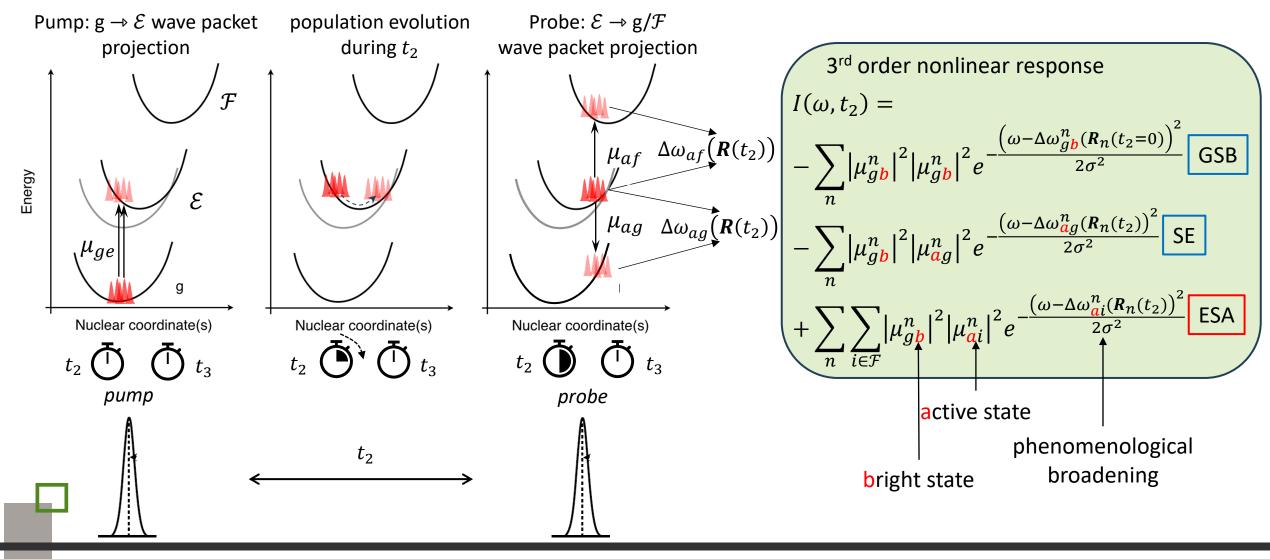



Transient spectroscopy

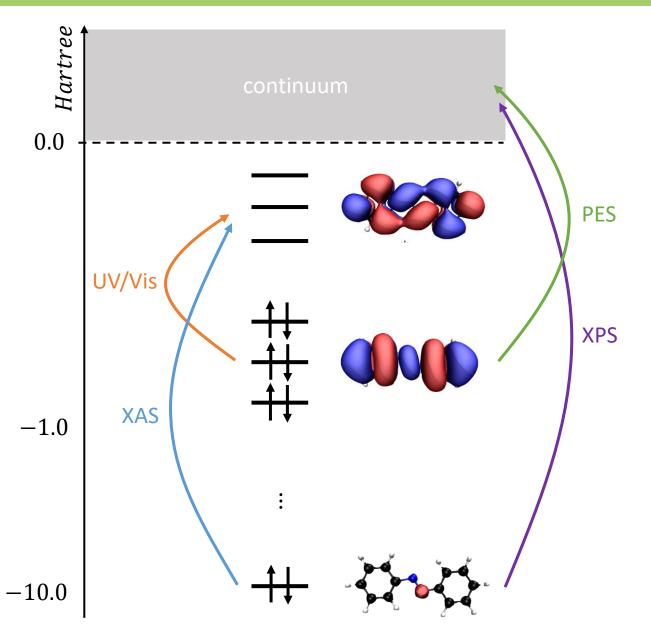




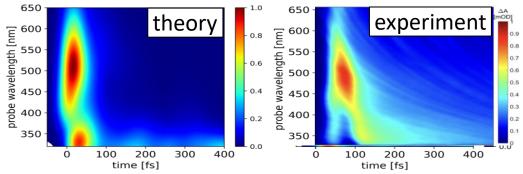




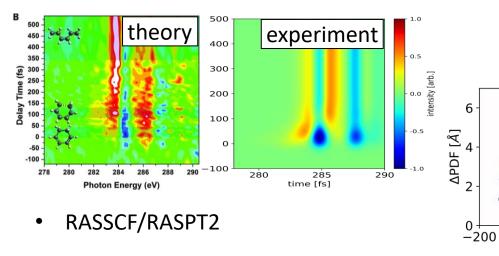
Transient spectroscopy from on-the-fly dynamics

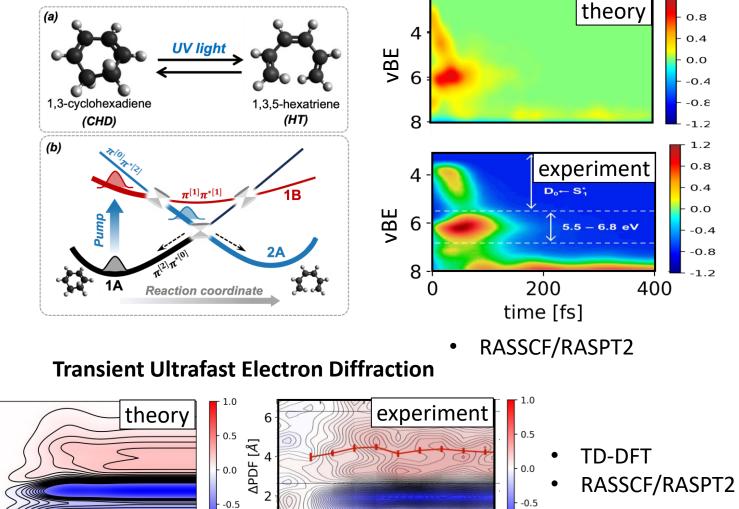

Transient spectroscopy from on-the-fly dynamics

$$\Psi(r,R,t) \approx \sum_{n} \sum_{i \in g, \mathcal{E}, \mathcal{F}} c_i(t) \delta_n(R_n,t) |\psi_i(r)\rangle$$


Transient Spectroscopy

- UV/Vis $(1.5 6 eV, valence \rightarrow valence^* orbitals)$
- far UV (6 20 eV, ionization from valence MO)
 - Photo-Electron Spectroscopy (PES)
- X-ray (> 20 *eV*, transitions and ionization from core-orbitals)
 - X-ray Absorption Spectroscopy (XAS)
 - X-ray Photo-Electron Spectroscopy (XPS)


Transient spectroscopy in COBRAMM


Transient UV/Vis Absorption

- TD-DFT •
- RASSCF/RASPT2 ٠
- TD-DFT//RASPT2 ٠

Transient X-ray Absorption

1.0

-200

0

200

time [fs]

400

600

800

400

200

time [fs]

0

600

Transient Photo-Emission

-0.5

-1.0

800

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2