

HANDS-ON SESSION Excited States Mixed Quantum-Classical Dynamics Initial conditions sampling and Surface Hopping Dynamics

Josene M. Toldo

Université Claude Bernard Lyon1, Laboratoire de Chimie, ENS de Lyon

Overview of the Hands-on sessions

1. Initial conditions and Spectrum generation

Method overview Generating a Wigner sampling Simulating the absorption spectra Selecting initial conditions for the dynamics

2. Surface hopping dynamics

Method overview Setting up a CASPT2 dynamics with OpenMolcas Setting up a TDDFT dynamics with ORCA Running a TSH dynamics

3. Analysis

Running Ulamdyn for the statistical analysis Analysing the results

Surface Hopping

Trajectory Surface hopping (TSH)

Core idea:

1. Nuclei are propagated via *classical trajectories*

2. Electrons are treated *quantum mechanically*

3. Changes between surfaces are controlled by a nonadiabatic algoritm which introduces the post BO effects.

Crespo-Otero and Barbatti, Chem. Rev. 2018, 118, 7026.

Introduction Initial Conditions Spectrum

Selecting IC

Select initial conditions

Initial conditions and spectrum

Case study: Pyrazine

Chemical Physics

Case study : Ultrafast photodynamics of Pyrazine

Chemical Physics 349 (2008) 319-324

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/chemphys

Nonadiabatic dynamics within the time dependent density functional theory: Ultrafast photodynamics in pyrazine

Ute Werner^a, Roland Mitrić^a, Toshinori Suzuki^b, Vlasta Bonačić-Koutecký^{a,*}

^a Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany ^b Chemical Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

Werner, Mitric, Suzuki, Bonacic-Koutecky, Chem. Phys., 2008, 349, 319.

Introduction Initial Conditions

Case study presentation

Case study : Ultrafast photodynamics of Pyrazine

Fig. 2. Time dependent population of the excited states of pyrazine after excitation to the S₂ state: $1^{1}B_{3u}$ (S₁) (red), $1^{1}A_{u}$ (green), $1^{1}B_{2u}$ (S₂) (blue) and $1^{1}B_{2g}$ (yellow) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

Werner, Mitric, Suzuki, Bonacic-Koutecky, Chem. Phys., 2008, 349, 319.

Case study presentation

Pyrazine PES main points

Steps

1. Perform a **geometry optimization** in the ground electronic state (S0) (Orca)

2. Perform a **frequency calculation** at the optimized S0 configuration (Orca)

3. Using the optimized geometry and the frequencies:

- a. Generate an approximate **Wigner distribution** for uncoupled harmonic oscillators, that will be used to select initial conditions for TSH dynamics
- b. For each selected nuclear geometry, **perform a TDDFT calculation** to extract the energies and oscillator strengths for a subset of low-lying electronic states .
- c. Plot a **photoabsorption** cross-section based on the previous calculations

4. Based on the sampled initial conditions, **create a series of trajectories** and run them one after the other, independently

5. Collect the results and make an **statistical analysis**

Steps

1. Perform a **geometry optimization** in the ground electronic state (S0) (Orca)

2. Perform a **frequency calculation** at the optimized S0 configuration (Orca)

3. Using the optimized geometry and the frequencies:

- a. Generate an approximate **Wigner distribution** for uncoupled harmonic oscillators, that will be used to select initial conditions for TSH dynamics
- b. For each selected nuclear geometry, **perform a TDDFT calculation** to extract the energies and oscillator strengths for a subset of low-lying electronic states .
- c. Plot a **photoabsorption** cross-section based on the previous calculations

4. Based on the sampled initial conditions, **create a series of trajectories** and run them one after the other, independently

5. Collect the results and make an **statistical analysis**

Input files tree

PART 2

Surface Hopping dynamics

Introduction

Fewest Switching trajectory surface hopping evolution

Initial Geometries

Initial Velocities

Initial Electronic State

Initial TDSE coefficients

At every classical time step we need to compute energies,

gradients and σ_{JK}^{NAC}

ntroduction Initial Conditions Spectrum TSH

Introduction

Baeck-An couplings (TDBA) dynamics

The coupling terms between any pair of states are

$$\sigma_{JK}^{NAC}\left(\mathbf{\bar{R}}\right) \equiv \left\langle \psi_{J} \left| \frac{\partial \psi_{K}}{\partial t} \right\rangle = \mathbf{d}_{JK} \cdot \mathbf{\bar{v}} \qquad \mathbf{d}_{JK} \equiv \left\langle \psi_{J} \left| \nabla \psi_{K} \right\rangle \right\rangle$$

When explicit nonadiabatic coupling vectors are not available the coupling terms can be computed by finite differences (time-derivative couplings).

Instead σ_{LJ}^{NAC} , we can use Baeck-An couplings.¹ The BA couplings only depend on the energy difference between the states.

$$\sigma_{JL} pprox v_Q h_{JL} = rac{\mathrm{sgn}\left(\Delta E_{JL}
ight)}{2} \sqrt{rac{1}{\Delta E_{JL}} rac{d^2 \Delta E_{JL}}{dt^2}}$$

do Casal.; Toldo,; Pinheiro .; Barbatti,. Fewest Switches Surface Hopping with Baeck-An Couplings. Open Research Europe 2021, 1, 49.

TSH Dynamics

ORCA/TDDFT with Baeck An couplings

Step 0 – Before starting

1. Access BEM using ssh -X username@ui.wcss.pl

2. Export NXCS and NXNS

export NX=/lustre/pd03/hpc-smukherjee-1743077499/SOFT/newtonx-cs/bin export NXHOME=/lustre/pd03/hpc-smukherjee-1743077499/SOFT/newtonx

3. Copy the files needed for the Tutorial to your /home directory: cp -r /lustre/pd03/hpc-smukherjee-1743077499/MOLEX2025_TUTORIAL_FILES/TUTORIAL_4 ~ cd TUTORIAL_4

4. Create a folder called DYN_ORCA and move to this directory mkdir DYN_ORCA && cd DYN_ORCA

5. Copy the selected initial conditions to DYN_ORCA directory and rename it cp ~/TUTORIAL_3/SPECTRUM_ORCA/SELECTED_INITIAL_CONDITIONS/initial_condition.1.4 mv initial_condition.1.4 initial_condition

6. Copy the geom file and JOB_AD from the IC_ORCA folder (from yesterday): cp ~/TUTORIAL_3/IC_ORCA/geom . cp -r ~/TUTORIAL_3/IC_ORCA/JOB_AD .

7.Edit the orca.inp file inside JOB_AD vi JOB_AD/orca.inp

JOB_AD/orca.inp:

%pal nprocs 6 end

! B3LYP def2-SVP ENGRAD DEFGRID3

%maxcore 1000 # Memory settings

%tddft nroots 3 tda false end

* xyzfile 0 1 geom.xyz

The input is similar to the one for the initial conditions, but it needs the ENGRAD keyword for the calculation of the excited state gradients, required for the dynamics.

In this tutorial, we are going to use **NewtonX-NS** to run the TSH dynamics.

8. To create the inputs for NX-NS TSH, run: \$NXHOME/bin/nx_geninp

This command is analogous to the nxinp in NewtonX-CS: \$NX/nxinp

Select (1) GENERATE A BASIC INPUT

NEWTON-X NS 3 Newtonian dynamics close to the crossing seam www.newtonx.org

Please select the task to be performed:

- 1. Generate a basic input
- 2. Set up a non-adiabatic dynamics
- 3. Create trajectories
- 4. Save configuration and exit

Enter the desired choice: <1>

	1- Generate a basic input	
Nat	Number of atoms	[Enter]
Nstat	Number of states	4
Nstatdyn	State on which the dynamics will start	4
progname	QM program and method to use	4.1
dt	Time step of the classical equations	0.5
tmax	Maximum duration of the simulation	10
dc_method	Original algorithm from Tully	1
Baeck-An	Do you want to use approximated Baeck-An couplings ?	У
	Press any key to go back to the General Option menu.	

In the main nx_geninp menu you have the option to set more general options if you select option **2. Set up a non-adiabatic dynamics**.

Normally, this is not necessary; only if you want to change to some nondefault options.

Introduction Initial Conditions Spectrum TSH

In the Menu 2. Set up a non-adiabatic dynamics, you will see:

1. Set TDSE integration method and Surface Hopping algorithm

- 2. Define which non-adiabatic couplings (NAC) will be computed
- 3. Define how to compute time-derivative couplings
- 4. Return to main menu

The following options can be accessed through this menu:

```
&sh
  integrator = 1
 ms = 20
 getphase = 1
  nohop = 0
  nrelax = 0
  seed = -1
  probmin = 0.00
  popdev = 0.05
 tully = 1
  decay = 0.10
 mom = 1
  adjmom = 0
```

&nad_setup

kross = 1
cascade = 0
current = 1
never_state = 1
include_pair = 0

&auxnac

model = 0
ba_smooth = 0
ba_dh = 0.10000000000
ba_de = 0.073498644351
ba_dv = 0.10000000000

&nxconfig nat = 10nstat = 4nstatdyn = 4progname = orca methodname = tddft dt = 0.50tmax = 500.00dc method = 3use locdiab = F epot_diff = 0.20

Control file : user_config.nml

Now we are ready to generate the trajectories. Run: \$NXHOME/bin/nx_geninp

Туре	3- Create trajectories	3
nis	Lowest state considered	1
screen	Energy restriction criterion. Do not apply	0
<pre>read_os_fro m_file</pre>	Read oscillator strengths from initial_condition file	-1
norm	Use the energy-restricted data set	local
seed	A randomized seed is used	-1
run_is:	Will you compute the dynamical observables	n
proceed	Proceed to trajectory generation	1
	Save configuration and exit	4

Running the trajectories

Copy the submission file to each TRAJ directory. You can find the submission file inside the DYN-ORCA folder that you copied earlier.

- 5. Go to each one of the folders and run the submission script: cd TRAJECTORIES/TRAJ1 sbatch submit_nxns-orca6.job
- Note that command to run initial conditions is: \$NXHOME/bin/nx_moldyn > md.log 2>&1

TSH Dynamics

OPENMOLCAS/XMS-CASPT2 with NACS

Step 0 – Before starting

1. Access BEM using ssh -X username@ui.wcss.pl

2. Export NXCS and NXNS export NX=/lustre/pd03/hpc-smukherjee-1743077499/SOFT/newtonx-cs/bin export NXHOME=/lustre/pd03/hpc-smukherjee-1743077499/SOFT/newtonx

3. Copy the files needed for the Tutorial to your /home directory: cp -r /lustre/pd03/hpc-smukherjee-1743077499/MOLEX2025_TUTORIAL_FILES/TUTORIAL_4 ~ cd TUTORIAL_4

4. Create a folder called DYN_MOLCAS and move to this directory mkdir DYN_MOLCAS && cd DYN_MOLCAS

TSH

In the makedir.log in SELECTED_INIIAL_CONDITIONS we have for the XMS-CASPT2 job:

The number of initial conditions selected for transitions from state 1 into states (2 3 4) is 0:374:149.

5. Copy the selected initial conditions to DYN_CASPT2 directory and rename it cp ~/TUTORIAL_3/SPECTRUM_ORCA/SELECTED_INITIAL_CONDITIONS/initial_condition.1.3 cp ~/TUTORIAL_3/SPECTRUM_ORCA/SELECTED_INITIAL_CONDITIONS/initial_condition.1.4

6. Now, create one folder to start the dynamics in State 3 and another in state 4 and move the respective initial_condition.1.x to each folder.

mkdir state_3 mkdir state_4 mv initial_condition.1.3 state_3 mv initial_condition.1.4 state_4

7. In each folder, rename the initial_conditions file, like in the example: cd state_4 mv initial_condition.1.4 initial_condition

TSH

8. Copy the geom file and JOB_AD from the IC_OPENMOLCAS folder (from yesterday):
cp ~/TUTORIAL_3/IC_OPENMOLCAS/geom .
cp -r ~/TUTORIAL_3/IC_OPENMOLCAS/JOB_AD .

9. Rename JOB_AD and check open molcas.inp file inside JOB_NAD ${\tt mv}$ JOB_AD ${\tt mv}$ JOB_NAD

roduction Initial Conditions Spectrum TSH	
XMS-CASPT2 - input	&GATEWAY Title= Pyrazine_caspt2
	coord = openmolcas.xyz basis = cc-pVDZ Group=NoSymm RICD >>> EXPORT MOLCAS_MAXITER=100
JOB_NAD/openmolcas.inp:	&SEWARD DoAnalyticalDoAnalytical grid input grid=ultrafine end of grid input
	&RASSCF FileOrb = \$CurrDir/openmolcas.RasOrb Spin= 1 Nactel= 10 0 0 Inactive= 16 Ras2= 8 CiRoot= 4 4 1
	&CASPT2 XMultistate=all Imagin = 0.1

In this tutorial, we are going to use **NewtonX-NS** to run the TSH dynamics.

8. To create the inputs for NX-NS TSH, run: \$NXHOME/bin/nx_geninp

This command is analogous to the nxinp in NewtonX-CS: \$NX/nxinp

Select (1) GENERATE A BASIC INPUT

NEWTON-X NS 3 Newtonian dynamics close to the crossing seam www.newtonx.org

Please select the task to be performed:

- 1. Generate a basic input
- 2. Set up a non-adiabatic dynamics
- 3. Create trajectories
- 4. Save configuration and exit

Enter the desired choice: <1>

Introduction

Control file : user_config.nml

	1- Generate a basic input	
Nat	Number of atoms	[Enter]
Nstat	Number of states	4
Nstatdyn	State on which the dynamics will start	4
progname	QM program and method to use : OM / XMS-CASPT2	6.2
dt	Time step of the classical equations	0.5
tmax	Maximum duration of the simulation	10
dc_method	Original algorithm from Tully	1
Baeck-An	Do you want to use approximated Baeck-An couplings ?	n
	Press any key to go back to the General Option menu.	

Introduction Initial Conditions Spectrum TSH

Introduction

In the Menu 2. Set up a non-adiabatic dynamics, you will see:

1. Set TDSE integration method and Surface Hopping algorithm

- 2. Define which non-adiabatic couplings (NAC) will be computed
- 3. Define how to compute time-derivative couplings
- 4. Return to main menu

The following options can be accessed through this menu:

```
&sh
  integrator = 1
 ms = 20
 getphase = 1
  nohop = 0
  nrelax = 0
  seed = -1
  probmin = 0.00
  popdev = 0.05
 tully = 1
  decay = 0.10
 mom = 1
  adjmom = 2
  adjtheta = 0
```

```
&nad_setup
```

kross = 1
cascade = 0
current = 1
never_state = 0
include_pair = 0

```
&openmolcas
  mocoef = 1
  prt_mo = 20
  all_grads = 0
/
```

```
&nxconfig
  nat = 10
  nstat = 4
  nstatdyn = 4
  progname = openmolcas
  methodname = caspt2
  dt = 0.50
  tmax = 10.00
  dc_method = 1
  use_locdiab = F
 /
```

Introduction

Control file : user_config.nml

Now we are ready to generate the trajectories. Run: \$NXHOME/bin/nx_geninp

Туре	3- Create trajectories	3
nis	Lowest state considered	1
screen	Energy restriction criterion. Do not apply	0
<pre>read_os_fro m_file</pre>	Read oscillator strengths from initial_condition file	-1
norm	Use the energy-restricted data set	local
seed	A randomized seed is used	-1
run_is:	Will you compute the dynamical observables	n
proceed	Proceed to trajectory generation	1
	Save configuration and exit	4

Running the trajectories

Copy the submission file to each TRAJ directory. You can find the submission file inside the DYN-ORCA folder that you copied earlier.

- 5. Go to each one of the folders and run the submission script: cd TRAJECTORIES/TRAJ1 sbatch submit_nxns-orca6.job
- Note that command to run initial conditions is: \$NXHOME/bin/nx_moldyn > md.log 2>&1

Part 3

Analysis of TSH results

ULaMDyn: Enhancing Excited-State Dynamics Analysis Through Streamlined Unsupervised Learning

Analysis

Max Pinheiro, Jr., Matheus de Oliveira Bispo, Rafael Souza Mattos, Mariana Telles do Casal, Bidhan Chandra Garain, Josene M

Toldo, SAIKAT MUKHERJEE and Mario Barbatti

Pinheiro et al, Digital Discovery, 2024, Accepted. DOI /10.1039/D4DD00374H

https://ulamdyn.com/

https://ulamdyn.com/ulamdyn_walking-through.html

☆ / Walking through

😽 Edit on GitLab

Walking through

In this tutorial, we will see practical examples of using unsupervised machine learning methods to automate pattern discovery and get chemical insight from data generated by nonadiabatic molecular dynamics (NAMD) simulations. The NAMD data obtained within the surface hopping approximation is composed of an ensemble of trajectories that can be viewed as multivariate time series objects, where each point in time corresponds to a molecular geometry with its associated quantum properties. Thus, owing to the high dimensionality of the NAMD data, it can be cumbersome to identify the key internal coordinates of the molecule driving the excitedstate dynamics by "manual" inspection of the data. This is the scenario where unsupervised learning comes to the rescue. The main idea is to use algorithms designed to find natural grouping structures within the data - clustering analysis - or find a compact data representation -

SOURCE DOCUMENTATION: ulamdyn package

Jupyter notebook available at: https://gitlab.com/light-and-molecules/ulamdyn paper-2025

Before starting

1. Load interactive environment and visualization modules

sub-interactive -t 6 -m 24

module load Molden/7.3-GCCcore-12.3.0

module load VMD/1.9.4a57-foss-2022a

2. Load modules and environment:

module load Python/3.10.8-GCCcore-12.2.0
source /lustre/pd03/hpc-smukherjee-1743077499/SOFT/ULAMDYN/myenv/bin/activate

3. Run Ulamdyn helper: run-ulamdyn --help

4. Copy the files to your home:

cp -r MOLEX2025/MOLEX2025_TUTORIAL_FILES/TUTORIAL_5 ~

Analysis

and go to /ANALYSIS_ORCA/TRAJECTORIES

Running ULaMDyn

> Create trajs_tmax.dat: cd TRAJECTORIES ./get_lasttime.sh

You should have the file geom.xyz .
(copy geom and run \$NX/nx2xyz)

> Ulamdyn basic command lines: run-ulamdyn --save_dataset=all run-ulamdyn --create_stats=all run-ulamdyn --save_xyz=geoms, "hops, S43"

➢ Run BootStrap:

run-ulamdyn --bootstrap=1000

FSSH: U. Werner, R. Mitric, T. Suzuki, V. Bonacic-Koutecky, *Chem. Phys.* **349**, 319 (2008).
QD: P. Puzari, R. S. Swathi, B. Sarkar, S. Adhikari, *J. Chem. Phys.* **123**, 134317 (2005).

☆ ULaMDyn

Running Ulamdyn

be inside of TRAJECTORIES.

• Import the modules you are going to use.

[1]: import ulamdyn as umd import pandas as pd import numpy as np

GetProperties:

Read and process all properties available in the outputs of Newton-X MD trajectories (RESULTS directory). In this class, there are several methods implemented to extract specific information: energies(), oscillator_strength(), populations() and save_csv.

Energy quantities processed by this class are transformed from u.a. to eV. For the other properties, the original units used in NX are kept.

[2]: # Instanciate the class: properties = umd.GetProperties()

https://ulamdyn.com/data_curation.html

🕀 Installation

GETTING STARTED:

Search docs

Wrapper program

TUTORIAL:

□ Data curation

GetProperties:

Walking through

SOURCE DOCUMENTATION:

ulamdyn package

Analysis: Hopping

HOPS S43 : GAP

HOPS S43 : Times